
Abstract Urban development is a major cause of

habitat loss and fragmentation. Few studies, however,

have dealt with fragmentation in an urban landscape. In

this paper, we examine the genetic structure of isolated

populations of the eastern red-backed salamander

(Plethodon cinereus) in a metropolitan area. We sam-

pled four populations located on a mountain in the heart

of Montréal (Québec, Canada), which presents a mosaic

of forested patches isolated by roads, graveyards and

buildings. We assessed the genetic structure of these

populations using microsatellite loci and compared it to

the genetic structure of four populations located in a

continuous habitat in southern Québec. Our results

indicate that allelic richness and heterozygosity are

lower in the urban populations. Exact differentiation

tests and pairwise FST also show that the populations

found in the fragmented habitat are genetically differ-

entiated, whereas populations located in the continuous

habitat are genetically homogeneous. These results raise

conservation concerns for these populations as well

as for rare or threatened species inhabiting urban

landscapes.
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fragmentation Æ Microsatellites Æ Plethodon cinereus Æ
Urbanization

Introduction

In the past few years, a decline of amphibian popula-

tions has been observed worldwide (Houlahan et al.

2000). Although the causes of this decline often remain

unknown, numerous factors have been proposed, such

as climate changes (Pounds et al. 1999), pollutants

(Kucken et al. 1994), ultraviolet radiations (Blaustein

et al. 1998), diseases (Berger et al. 1998, but see

Ouellet et al. 2005b), acid rain (Beebee et al. 1990),

and invasive species (Knapp and Matthews 2000).

However, it is habitat modifications including habitat

loss, degradation and fragmentation that represent the

major factors affecting amphibian diversity (Green

1997; Dodd and Smith 2003).

Many studies have dealt with fragmentation caused

by agricultural or logging activities (e.g., Kolozsvary

and Swihart 1999; Vos et al. 2001). However, urban

development has also been a major factor of landscape

evolution and habitat fragmentation (Miller and

Hobbs 2002). During the second half of the 20th cen-

tury, the proportion of the human population living in

urban areas has increased steadily, rising from 29% in

1950 to 47% in 2000 (United Nations Population

Division 2004). In Canada, more than 78% of the

population now live in urban centers (Statistics Canada

2000). As a consequence, urban agglomerations are

sprawling at the expense of natural areas within and

outside the cities.

Urbanization has a strong negative impact on bio-

diversity. For example, it has been shown to change

species composition and increase the number of inva-

sive species (Tait et al. 2005). Habitat loss due to

urbanization is the principal cause of species endan-

germent in the mainland United States (Czech et al.
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2000). To limit the effects of urbanization, parks are

often created within metropolitan areas to retain a part

of the original biodiversity of the region, and they are

thus a very important component of landscapes.

However, little is known about animal populations

living in urban natural areas, and to what extent they

are affected by urban challenges such as human dis-

turbance, pet predation, proliferation of pest species

and most importantly, habitat fragmentation.

Habitat fragmentation can be defined as the subdi-

vision of a large area of habitat into smaller isolated

patches (Wilcove et al. 1986). It usually implies a

diminution in the total amount of habitat available and

a change in the spatial configuration of the remaining

habitat (Fahrig 2003). Fragmentation is thought to

have severe effects on the genetic structure of

populations. After fragmentation, the remaining pop-

ulations are smaller and more susceptible to greater

temporal variation in population size, which increase

their extinction probabilities (Reed and Hobbs 2004).

Following bottlenecks, populations may experience

loss of rare alleles and a diminution of heterozygosity

through genetic drift and inbreeding. These processes

contribute to the erosion of genetic diversity and can

lead to fitness reduction (Reed and Frankham 2003).

Also, as genetic diversity represents the adaptative

potential of a species, reduced genetic variability can

inhibit the ability of a population to respond to rapid

environmental changes (Young et al. 1996).

Here, we assess the impact of urban fragmentation

on the population genetic structure of the eastern

red-backed salamander (Plethodon cinereus), a small

terrestrial amphibian species distributed throughout

eastern North America. Two different color morphs

are found in most natural populations. The striped

morph has a red stripe on the back and the tail,

whereas the lead-backed morph is uniformly dark and

lacks this stripe. This coloration pattern is controlled

by a single gene for which the allele coding for the

striped morph is dominant (Highton 1959). Addition-

ally, erythristic morphs, which are entirely red, and

albinos are also occasionally encountered in some

populations (Reed 1908; Rosen 1971; Dyrkacz 1981).

Like all members of the genus Plethodon, the eastern

red-backed salamander does not have an aquatic larval

stage (Petranka 1998). Females lay their eggs under

logs, rocks and other natural cover objects and the eggs

develop into tiny salamanders resembling the adults.

Eastern red-backed salamanders are associated with

mature forests with moist soils (Grover 1998; Bonin

et al. 1999; Hyde and Simons 2001) and rarely venture

across dry and hot habitats (Larson et al. 1984). Dis-

persal distances of Plethodon cinereus are not clearly

known. Although the mean daily movements are as

low as 0.4 m, it has been shown that some individuals

can easily travel 30 m to return to their territory when

displaced. However, the homing ability is greatly re-

duced when displacement distances increase up to

90 m (Kleeberger and Werner 1982). P. cinereus usu-

ally occurs at high densities (Jaeger 1979) and often

represents the most abundant species of salamander in

forests (Burton and Likens 1975; Marsh and Beckman

2004). Eastern red-backed salamanders can even be

encountered in highly patchy habitats, and thus seem

to be resilient to fragmentation (Gibbs 1998a). How-

ever, the population sizes of isolated populations are

probably reduced because small habitats usually har-

bor smaller populations than larger patches (Fahrig

2003) and because the eastern red-backed salamander

is sensitive to edge effect (deMaynadier and Hunter

1998). Consequently, dispersal patterns and genetic

diversity may be altered in isolated populations, but it

is not clear to what extent habitat fragmentation

affects the genetic structure of the eastern red-backed

salamander.

In this paper, the effect of habitat fragmentation on

the eastern red-backed salamander was evaluated by

comparing isolated urban populations with populations

located in a continuous habitat. First, we predicted that

populations from the fragmented habitat would exhibit

lower genetic diversity. Secondly, because all urban

salamander populations are isolated by dispersal

barriers, we expected to detect a higher level of

population differentiation among these populations.

Methods

Sampling

Sampling was conducted in the summer and fall of 2004

on two mountains. Urban salamander populations were

sampled from the Mount Royal (45�30¢ N, 73�35¢ W),

which is a highly fragmented mountain (233 m high)

located in the heart of Montréal (Québec, Canada). It is

part of the Monteregian Hills, a series of small moun-

tains formed during the Cretaceous by the intrusion of

igneous rock into older sedimentary rock (Adams 1903;

Ouellet et al. 2005a). The Mount Royal represents an

important reservoir of biodiversity in the urban land-

scape. Unfortunately, it has been gradually fragmented

by human activities since the arrival of the first Euro-

pean settlers over 350 years ago. A road, created

around 1700, still divides the Mount Royal in two parts,

and was probably the first main anthropogenic feature

to fragment the habitat. Between 1852 and 1855, two
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graveyards were established and have considerably

contributed to the deforestation of the mountain in the

following years. In 1924, a tramway line was con-

structed along an east/west axis, and was later trans-

formed into a paved road. Intensive residential and

commercial development has also occurred on the

mountain throughout the years. This strong urbaniza-

tion has already led to the extinction of at least four

species of amphibians and reptiles on the mountain

(M. Ouellet et al. unpublished results). Nowadays, the

Mount Royal presents a mosaic of forested habitats,

some of them still inhabited by populations of eastern

red-backed salamanders. The Mount Royal popula-

tions (MR-1 to MR-4) are isolated from each other by

roads, graveyards or buildings, and are separated by

distances ranging from 0.9 to 3.3 km (Fig. 1A).

Salamanders were also collected from the Mount

Mégantic (45�27¢ N, 71�09¢ W), which lies 190 km east

of Montréal, and is the highest (1105 m) and the most

pristine of the Monteregian Hills. It is part of a Na-

tional Park, and it is protected against any form

of commercial exploitation or deforestation. The

mountain is entirely forested and hence represents a

continuous habitat where the distribution of eastern

red-backed salamanders is constrained only by alti-

tude. Since we were not able to circumscribe isolated

populations in this continuous habitat, we selected

four sampling sites (MM-1 to MM-4) distributed in a

pattern similar to that of the Mount Royal. Those

sampling sites were separated by distances ranging

from 0.8 to 4.1 km (Fig. 1B).

In each of the eight populations on the two moun-

tains, we collected from 25 to 30 specimens by active

searches under natural cover objects. Tail-tips were cut

and stored in 95% ethanol at room temperature until

further DNA extraction.

Genotyping

DNA was extracted using a standard phenol–chloro-

form protocol (Sambrook et al. 1989) with phase-lock

gel (Murphy and Hellwig 1996). We used seven

microsatellite loci (PcII14, PcJX06, PcJX24, PcLI16,

PcLX16, PcLX23, and PcXF08) designed for P. cine-

reus (Connors and Cabe 2003). All forward primers

were fluorescently labeled.

Amplifications were carried out in 10 ll volumes

including 10 mM Tris–HCl, 0.1% Triton X-100, 50 mM

Fig. 1 Map of eastern North
America with inserts showing
the populations of the eastern
red-backed salamander
(Plethodon cinereus) sampled
from the fragmented habitat
of the Mount Royal (A) and
the continuous habitat of the
Mount Mégantic (B)
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KCl, 0.3–0.7 mM MgCl2, 0.25 mM of each dNTP,

0.2 lM of each primer, 0.5 U of Taq DNA polymerase,

and 50–100 ng of template DNA. PCR conditions were

as followed: after initial denaturation at 94�C for

2 min, cycling was performed for 30 cycles of 30 s at

94� C, 45 s at 61�C and 30 s at 72�C, with a final

extension of 5 min at 72�C for all loci, except PcII14

for which annealing temperature was 57�C. PCR

products were separated on an acrylamide gel using an

ABI prism 3100 genetic analyzer (Applied Biosystems

Inc.). We determined all genotypes using Genescan

analysis 3.1.2 (Applied Biosystems Inc.).

Analyses

The frequency of red-backed and lead-backed morphs

for each population was computed as a mean to eval-

uate population differentiation with morphological

characters. Differences between mountains were

assessed with a Fisher exact test. Linkage disequilib-

rium across all populations and deviation from

Hardy–Weinberg equilibrium were tested with Gene-

pop version 3.2 using a Markov Chain method to

estimate the exact probability of each test (Raymond

and Rousset 1995). We estimated genetic diversity

using observed heterozygosity (Ho), expected hetero-

zygosity (He) and allelic richness, a measure of the

number of alleles per locus corrected for differences in

population size with a resampling procedure (Petit

et al. 1998). We also recorded the number of private

alleles in each population. All parameters were com-

puted using FSTAT version 2.9.3.2 (Goudet 2002). To

test the significance of the differences in Ho, He, and

allelic richness between Mount Royal and Mount

Mégantic populations, we used the non-parametric test

implemented in FSTAT with 10,000 permutations. The

one-tailed permutation test was used because we

expected the populations in the fragmented landscape

to have smaller heterozygosity and allelic richness

values.

To examine the population structure within and

between mountains, we performed Fisher exact tests of

population differentiation across all populations and

for all pairwise comparisons in Genepop version 3.2

(Raymond and Rousset 1995). We also assessed pop-

ulation structure by an analysis of molecular variance

(AMOVA, Excoffier et al. 1992) and all pairwise FST

were tested for significance in Arlequin 2.0 (Schneider

et al. 2000). To measure dispersal among populations

on each mountain, we performed assignment tests

(Wasser and Strobeck 1998; Berry et al. 2004) using the

Bayesian approach of Rannala and Mountain (1997)

implemented in Geneclass2 (Piry et al. 2004).

Sequential Bonferroni corrections were applied when-

ever necessary to correct for multiple comparisons

(Rice 1989).

Results

A total of 221 P. cinereus were sampled from the two

mountains. Striped individuals largely predominated in

all populations, with a single lead-backed individual

found on Mount Mégantic (99.0% striped) and four on

Mount Royal (96.7% striped). The morphotype fre-

quencies were not statistically different on the two

mountains (P = 0.243).

All loci were polymorphic except PcJX24 for which a

single allele was observed. This locus was thus excluded

from further analyses. The number of alleles per locus

ranged from 5 (PcLI16) to 18 (PcII14), with a mean of

12 alleles per locus and a total of 72 different alleles.

No significant linkage disequilibrium was observed for

any pair of loci after correcting for multiple compari-

sons. All populations were in Hardy–Weinberg equi-

librium except MR-1 and MM-1 for the PcLX16 locus,

but all loci were used for further analyses. Number of

alleles, number of private alleles, allelic richness,

observed heterozygosity (Ho) and expected heterozy-

gosity (He) for each population are given in Table 1.

One-tailed permutation tests revealed that allelic rich-

ness (P = 0.008), Ho (P = 0.0117) and He (P = 0.0117)

are significantly higher for Mount Mégantic.

Fisher exact tests of population differentiation

revealed a highly significant difference between allelic

frequencies of the Mount Royal and Mount Mégantic

populations, when all individuals from the same

mountain were pooled together (P < 0.0001). Within

Mount Royal, differentiation was significant for all

populations (P < 0.0001). Moreover, all pairs of pop-

ulation were clearly differentiated on the basis of

allelic frequencies (Table 2). On the other hand, the

populations from Mount Mégantic had similar allelic

frequencies (P = 0.5201) and no pairwise comparison

was significant (p ranging from 0.1570–0.8308). FST

values were consistent with these results and were only

significant for pairwise comparisons among Mount

Royal populations (Table 2). Probabilities associated

with FST in Mount Mégantic pairwise comparisons

ranged from 0.3145 to 0.9365. A FST of 0.1882 was

obtained between the two mountains when all indi-

viduals from the same mountain were pooled together.

The AMOVA revealed that 79.5% of the molecular

variance is explained by within-population variation.

The partitioning of genetic variation between

mountains (P = 0.0293) and among populations within
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mountains (P < 0.0001) were also significant (Table 3).

The success rate of assignment tests was twice as good

for the Mount Royal (53%) than for Mount Mégantic

(23%), indicating a higher dispersal rate among the

continuous habitat of the Mount Mégantic.

Discussion

Population differentiation

The comparison of populations sampled from frag-

mented and continuous landscapes allowed us to

clearly assess the impact of habitat fragmentation on

the genetic structure of the eastern red-backed sala-

mander. Microsatellite analysis indicated a strong

population differentiation on the Mount Royal, similar

to what has been observed for numerous amphibian

populations inhabiting fragmented habitats (e.g.,

Hitchings and Beebee 1997; Gibbs 1998b; Pabijan et al.

2005). This differentiation challenges the conception

that all populations from formerly glaciated areas are

genetically uniform (Highton and Webster 1976).

Eastern red-backed salamanders are sedentary animals

with home range limited to tens of square meters,

which may explain the population differentiation ob-

served (Kleeberger and Werner 1982). However, they

have been shown to travel across open fields up to

55 m (Marsh et al. 2004). In this study, populations

were separated by non-hospitable habitat by 900 m or

more, a distance sufficient to prevent important

migration among populations. Moreover, some popu-

lations were separated by roads, which are known to

have a strong negative effect on animal populations

Table 1 Sample sizes (n), number of private alleles and
estimates of genetic diversity averaged over all microsatellite
loci for the populations of eastern red-backed salamanders

(Plethodon cinereus) sampled from a fragmented habitat (Mount
Royal) and a continuous habitat (Mount Mégantic)

Populations n No. alleles No. private alleles Allelic richness Ho
a He

b

Mount Royal 120 44 16 4.18 0.42 0.44
MR-1 30 31 8 4.82 0.42 0.46
MR-2 30 30 5 4.67 0.38 0.40
MR-3 30 25 1 3.97 0.49 0.66
MR-4 30 20 2 3.24 0.41 0.44

Mount Mégantic 101 62 20 6.85 0.64 0.74
MM-1 25 42 4 6.86 0.61 0.74
MM-2 26 38 4 6.90 0.64 0.75
MM-3 25 42 6 7.29 0.69 0.75
MM-4 25 44 6 6.37 0.62 0.76

a Ho: Observed heterozygosity
b He: Expected heterozygosity

Table 2 Pairwise FST values (upper triangular matrix) and probabilities of exact population differentiation tests (lower triangular
matrix) for the four eastern red-backed salamander (Plethodon cinereus) populations of the Mount Royal

MR-1 MR-2 MR-3 MR-4

MR-1 – 0.0439* 0.0604* 0.0326*
MR-2 0.0009* – 0.1133* 0.1081*
MR-3 <0.0001* <0.0001* – 0.0270*
MR-4 0.0002* <0.0001* <0.0001* –

All tests were performed with 10,000 permutations. Significant tests at the 0.05 level are indicated with an asterisk

Table 3 Analysis of molecular variance (AMOVA) assessing the genetic structure of eastern red-backed salamander (Plethodon
cinereus) populations from Mount Royal and Mount Mégantic

df Sum of squares Variance components % variation P

Between mountains 1 89.13 0.39 18.27 0.0293
Among populations within mountains 6 25.82 0.05 2.24 <0.0001
Within populations 434 730.32 1.68 79.49 <0.0001
Total 441 845.27 2.12

The probabilities were assessed with 10,000 permutations

Conserv Genet (2007) 8:599–606 603

123



through roadkills (Ehman and Cogger 1985; Kuhn

1987; Fahrig et al. 1995; Forman and Alexander 1998).

In addition, roads disturb their surrounding habitat

through noise and pollutants, which may reduce the

densities of the eastern red-backed salamander (Marsh

and Beckman 2004).

Unlike microsatellite markers, the analysis of

morphotype frequency did not reveal any differences

among populations of the Mount Royal. Greer (1973)

suggested that the distribution of morph frequency in

P. cinereus was correlated to climate, with unstriped

morphs generally being more prevalent where the

climate is warmer (Lotter and Scott 1977). Because all

populations were sampled in the northern part of

the species distribution, it may explain why striped

individuals were largely predominant. However, dif-

ferences in morph frequencies are known to occur over

less than 10 km (Highton 1977), such that other factors

should be involved to explain the variation in morph

frequency. Although the mechanism is not yet fully

understood, several hypotheses have been proposed,

such as ecological isolation and differential fitness

(e.g., Thurow 1961; Brown 1965; Pfingsten and Walker

1978).

Genetic diversity

All molecular estimates of genetic diversity were lower

for the fragmented Mount Royal populations. Lower

genetic diversity for populations in fragmented habitat

has been observed for a variety of amphibian species

(e.g., Hitchings and Beebee 1997, 1998; Andersen et al.

2004). However, in a similar study involving eastern

red-backed salamander populations isolated for a

comparable timescale (200–300 years), Gibbs (1998b)

did not find significant differences in the genetic

diversity of populations in fragmented and continuous

habitat. In this particular study, genetic diversity was

measured using three Random Amplified Polymorphic

DNA markers (RAPDs, Welsh and McClelland 1990;

Williams et al. 1990). Although these markers have

been widely used in population genetics (e.g.,

Kimberling et al. 1996; Zeisset and Beebee 2003), they

present serious drawbacks, such as uncertain

homology and reproducibility concerns (Muralidharan

and Wakeland 1993; Schierwater and Ender 1993;

Rieseberg 1996). But most importantly, RAPDs are

dominant markers. Thus it takes more markers to

obtain a similar level of resolution with respect to

co-dominant markers. This may explain, in part, the

similarity in genetic diversity observed by Gibbs

(1998b) for salamander populations living in

fragmented and unfragmented habitat.

The diminution of genetic diversity may be related

to the decrease of population size induced by frag-

mentation and subsequent genetic drift (Frankham

1996). Although the actual sizes of the Mount Royal

populations are unknown, we have many reasons to

believe that they are rather small. First, the remaining

P. cinereus are confined to small patches, which harbor

smaller populations than larger patches (Fahrig 2003).

Secondly, the Mount Royal is frequented by 3 millions

visitors every year for recreational activities, including

mountain biking, and these visitors often wander out-

side established paths, thus perturbing even more the

suitable habitat for salamanders (M. Ouellet et al.

unpublished results). Finally, eastern red-backed sala-

manders are sensitive to habitat modifications induced

by the proximity of forest edges (Marsh and Beckman

2004).

Based on simulations, the reduction of genetic var-

iability due mainly to genetic drift should be detectable

after 10 generations in small populations (Lacy 1987).

While the generation time of eastern red-backed sala-

manders is not clearly known, it is generally assumed

to be from 5 to 10 years (Gibbs 1998b). The first in-

stance of fragmentation on the Mount Royal was the

construction of a road separating populations MR-2

and MR-3 from the others in 1700. Although it was at

first only a small country road, it was probably enough

to somewhat reduce gene flow. Nowadays, this road is

a major avenue that acts as a strong barrier to sala-

mander migration. Using these figures, it appears that

the eastern red-backed salamander populations may

have been fragmented for at least 30 generations, a

sufficient amount of time to observe the effects of

genetic drift.

The observed loss of genetic diversity is worrying

for the urban populations of the eastern red-backed

salamander. Because genetic diversity is highly cor-

related with fitness, and because low genetic diversity

reduces the ability of a species to adapt to changing

environments, the long term survival of these popu-

lations may be at risk (Young et al. 1996; Reed and

Frankham 2003). Moreover, the populations are fac-

ing other important threats such as habitat loss caused

by residential and commercial development projects

and habitat degradation caused by recreational

activities.

The eastern red-backed salamander is a widely dis-

tributed species encountered almost in every mature

forest, and which could reach impressive densities

(Jaeger 1979). Yet, our results show that this common

species can be severely affected by habitat fragmen-

tation, and this raises concern for rare or threatened

species inhabiting such urban landscapes.

604 Conserv Genet (2007) 8:599–606

123



Acknowledgements We would like to thank D. Fournier,
P. Graillon, S. Marquis, M.-J. Morin, R. Pétel, É. Richard and
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